Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.23.350348

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) has been suggested as a receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry to cause coronavirus disease 2019 (COVID-19). However, no ACE2 inhibitors have shown definite beneficiaries for COVID-19 patients, applying the presence of another receptor for SARS-CoV-2 entry. Here we show that ACE2 knockout dose not completely block virus entry, while TfR directly interacts with virus Spike protein to mediate virus entry and SARS-CoV-2 can infect mice with over-expressed humanized transferrin receptor (TfR) and without humanized ACE2. TfR-virus co-localization is found both on the membranes and in the cytoplasma, suggesting SARS-CoV-2 transporting by TfR, the iron-transporting receptor shuttling between cell membranes and cytoplasma. Interfering TfR-Spike interaction blocks virus entry to exert significant anti-viral effects. Anti-TfR antibody (EC50 16.6 nM) shows promising anti-viral effects in mouse model. Collectively, this report indicates that TfR is another receptor for SARS-CoV-2 entry and a promising anti-COVID-19 target.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
2.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-33171.v1

ABSTRACT

Hypercytokinemia is a critically fatal factor in COVID-19. However, underlying pathogenic mechanisms are unknown. Here we show that fibrinogen and leukotriene-A4 hydrolase (LTA4H), two of the most potent inflammatory contributors, are elevated by 67.7 and astonishing 227.7% in the plasma of patients infected by SARS-CoV-2 and admitted to intensive care unit in comparison with healthy control, respectively. Conversely, transferrin identified as a fibrinogen immobilizer in our recent work and Spink6 are down-regulated by 40.3 and 25.9%, respectively. Furthermore, we identify Spink6 as the first endogenous inhibitor of LTA4H, a pro-inflammatory enzyme catalyzing final and rating limited step in biosynthesis of leukotriene-B4 that is an extremely inflammatory mediator and a target to design superior anti-inflammatory drugs. Additionally, virus Spike protein is found to evoke LTA4H and fibrinogen expression in vivo. Collectively, these findings identify the imbalance between inflammatory drivers and antagonists, which likely contributes to hypercytokinemia in COVID-19. Spink6 may have superior anti-inflammatory function because it specifically targets epoxide hydrolase of LTA4H to inhibit leukotriene-B4 biosynthesis without effecting LTA4H’s aminopeptidase activity. 


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL